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The metabolism of steroids at position 17 is catalysed by a growing number of 17beta-hydroxysteroid
dehydrogenases (17(3-HSDs). Several human diseases like breast or prostate cancer, endometriosis,
metabolic syndrome and mental diseases were associated with dysfunctions of 173-HSDs, which con-
sequently became drug targets. This review will focus on identities of 173-HSDs and recent advances in
analyses of their physiological roles in steroid and lipid metabolism. It will also address the potential of
metabolomics in drug development.

© 2009 Elsevier Ltd. All rights reserved.

1. Steroid signaling

Steroid metabolism is observed in most species studied so far
including prokaryots, invertebrates and vertebrates. Steroid con-
version was reported in bacteria [1,2], fungi [3,4], corals [5], worms
[6,7], fish [8,9], reptiles [10,11], birds [12,13], and mammals [14]
to name few. With the progression of genome sequencing projects
substantial data is provided to verify if the metabolism is associated
with signalling or with nutrition. Steroids hydroxylated at position
17, like estradiol or testosterone, have pivotal regulatory functions.
They act through membrane sensors like GPR30 [15,16] modulat-
ing kinase cascades or the cross-talk between EGFR/HER [17,18],and
nuclear receptors [19-21]. The biological potency of certain steroids
like androgens and estrogens is controlled by 173-hydroxysteroid
dyhydrogenases (173-HSDs) requiring cofactors for this reaction
(Fig. 1).

2. Identity of known 173-HSDs

The 173-HSDs constitute a class of enzymes [14,22] recently
attracting considerable attention, due to their ability to specifically
modulate activity of hormones, to tightly control cellular responses,
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and offering unique pharmacological intervention points. The num-
ber of 173-HSDs identified is growing (Table 1). The enzymes
belong structurally to a large gene family of short-chain dehydro-
genases/reductases (SDRs) [23-25]. One exception is the 17(3-HSD
type 5 or AKR1C3 which belongs to Aldo-Ketoreductase (AKR) fam-
ily [26,27]. These enzymes are among targets in the druggable
genome [28].

While the present nomenclature reflects the chronology of iden-
tification, it is not perfect, because the same enzyme types (highly
similar in amino acid sequences) apparently may have different
functions in distinct species. In human the numbering goes up to the
14th type of 173-HSD. Whereas human enzymes type 6, 9 are most
probably active in retinoid metabolism, for rodent 173-HSDs type
6 and 9 steroid activities have been reported [29,30]. The 173-HSD
enzymes are further acting on a large set of substrates like steroids,
bile and fatty acids, retinols, and xenobiotics. Their specificity is
reached by distinct subcellular localisations, cofactor preferences,
spatio-temporal patterns of tissue expression. Although the 173-
HSDs share the same protein fold as demonstrated by crystallisation
studies, the differences in non-conserved amino acid sequences
result in distinct functionalities [23,31,32]. In addition to position
17 the 173-HSDs can act on position 3, 7, 15, 20 and 24 of various
lipids (Fig. 2).

Because of apparent participation in many pathways the phys-
iological role of 173-HSDs is controversially discussed for some
enzyme types. For example the 173-HSD type 4 was first iden-
tified as the estradiol dehydrogenase from porcine endometrium
[33], whereas later experiments [34-36], identification of human
mutants [37,38], and gene disruption in the mouse [39] have deter-
mined that its main function is in peroxisomal 3-oxidation and bile
acid metabolism. An open discussion of the same kind is held for
the 173-HSD type 12 [40] reported to be responsible for estradiol
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Fig. 1. Conversion of steroids at position 17 modulates the biological potency. Keto-forms (estrone) are less potent than hydroxy-forms (estradiol). Reaction direction is

determined by cofactor and substrate presence.

Table 1
Identities of 17beta-hydroxysteroid dehydrogenases.
Type Gene Other names Chr. Com. References
1 HSD17B1 E17KSR, EDHB17 17q11 * [82,83]
2 HSD17B2 E2DH, HSD17 16q24 [53,84]
3 HSD17B3 9q22 [54]
4 HSD17B4 MFP-2, DBP 5q21 [38,85-89]
5 AKR1C3 HSD17B5 10p15 [90-92]
6 HSD17B6 HSE, RODH 12q13 +R [93,94]
7 HSD17B7 PRAP 1923 * [46,95]
8 HSD17B8 6p21.3 [96]
9 RDH5 HSD17B9 12q13 +R [97]
10 HSD17B10  ERAB, HSDH Xp11.2 [98-102]
1 HSD17B11  retSDR2, Pan1b, DHRS8  4q22.1 # [103,104]
12 HSD17B12 KAR 11p11.2 [41,105,106]
13 HSD17B13  SCDR9 4q22.1 #,U [107]
14 HSD17B14  retSDR3, DHRS10 19q13.33 [49]

Chr., chromosome; Com., comments; *, pseudogene present in the same locus; **,
pseudogenes present in chr. 1q44 and 10p11; R, probably only retinoid metabolism
in human; U, enzymatically not characterised. Gene presence in the same gene clus-
ters is denoted by # and +, respectively. Chromosomal assignments are taken from
[95,108,109].
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formation in women but known previously as a keto-reductase of
fatty acid elongation process [41]. Accumulating evidences in dif-
ferent species including C. elegans [42] and human [43,44] point to
a side-activity or less critical function of 173-HSD type 12 towards
steroids. The characterisation of mouse models with targeted gene
disruption will provide more data to this discussion soon.

3. Searching for new 173-HSDs

While recalling data on multifunctionality one could rise a ques-
tion what should be requirements for assigning a new type of
173-HSD. The guide for that is applicable to many enzyme classes
[45]. First, the enzyme gene and the resulting gene product must be
known. Solely the observation of activity in a new species or new
tissue is not sufficient. Second, metabolic activity should be tested
with several substrates and cofactors. Especially distinct classes
of substances like steroids, fatty acids, quinones, etc., should be
tested. These classes could be inferred from phylogenetic studies
or molecular docking. The kinetic parameters found should be then
compared to those expected in vivo. Third, a comparison to activity
known in homologous enzymes should be performed. This should
contribute to the knowledge if the observed activity is already

OH
CO-SCoA
17B-HSD 4
17B-HSD 9
| (5)
P P P P OH
15
17f-HSD 12
(6)

(3) 3 S-CoA
\/\/\/\/\/\/\f\ol‘/

Fig. 2. Examples of different substrates for 17beta-hydroxysteroid dehydrogenases. Enzymes participating are given next to formulas. Conversions can take place at positions
indicated. (1) Progesterone, (2) zymosterone (cholesterol precursor), (3) cholic acid (bile acid), (4) tetrahydroxycholestanoic acid (bile acid), (5) retinol, (6) palmitoyl-CoA

(long chain fatty acid).
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present in the whole phylogenetic clade or is a new evolutionary
appearance. Fourth, an inactivation of the candidate enzyme should
result in a loss of activity in the assay system. This could be done
by inhibitors, siRNA or gene deletion experiments.

The technologies for such verifications and appropriate models
are available and were used with success in yeast [46], C. elegans
[42], human cell lines [44,47] or rodents [48]. Such experiments
would definitely consume much time and resources but at the
same time they would prevent false-positive identifications. Espe-
cially for targeted drug development, this would be of tremendous
advantage.

An example for the successful identification of a novel 17b-HSD
is the type 14 enzyme [49] known previously as DHRS10 (an unchar-
acterised SDR enzyme). The protein was crystallised and through
modelling approaches some substance classes were suggested and
tested for conversion in vivo in transfected human cell lines. The
shown conversion of estradiol to estrone by the enzyme was inde-
pendently confirmed in other transfected cell lines and in addition
found to be a prognosis factor in breast cancer [43].

An example for an exclusion from the new entries to the 173-
HSDs is the result of analyses of the SDR orphan enzyme HSD-like1
(HSDL1) [50]. In search for functional assignment of human HSDL1,
the enzyme was screened for putative substrates suggested by
phylogenetics and SDR-substrate spectrum. Surprisingly, human
HSDL1 shows an exchange of the amino acid thyrosine in the active
center (Y218F) which is considered critical for catalysis. This amino
acid exchange in HSDL enzymes is present in many other vertebrate
species, including zebrafish. When human HSDL1 was expressed in
cells, it did not show enzymatic activity with any of the substrates
tested. However, expression of the HSDL1 with the point mutation
F218Yresulted in the reconstitution of weak dehydrogenase activity
towards steroid and retinoid substrates. The role of this inactivating
mutation is uncertain at present. All data gained did not qualify the
HSDL1 to be considered as a new 173-HSD.

4. New approaches for function determination

Presently known human 173-HSDs were identified after enzy-
matic profiling of purified [51] or expressed proteins [26,36,52],
after expression cloning [53], or by characterisation of genetic
effects [38,54]. However, it is an obvious challenge to use the ligand
to identify a binding protein. Since this kind of affinity purifica-
tion procedure turns out to be fairly inefficient for many lipids. For
example, neither the estradiol receptor nor any of the 173-HSDs
were purified with estradiol as a ligand. There are many explana-
tions for that, like too many unspecific interactions with the matrix
(e.g. sepharose) or steric hindrance of the matrix to ligand-protein
interactions. New technologies might overcome these problems.
Recent progress in combining highly sensitive detection methods
with affinity-purification technologies promise to provide compre-
hensive lists of ligand or drug binding proteins. An example of such
attempts is compound capture mass spectrometry [55]. Capture
compounds are trifunctional molecules. They consist of a selectivity
feature (e.g.a candidate drug), which reversibly interacts via affinity
with proteins. Further, they contain a photo-activable moiety that
forms a covalent bond with the captured protein outside the affinity
binding site. Finally, they comprise a sorting part (e.g. biotin) that
allows the captured protein(s) to be isolated from cellular lysate
for mass spectrometric analysis and subsequent characterisation
by database queries. Most of the critical interaction and isolation
procedures are taking place in solution thus avoiding size exclusion
and unspecific effects of matrices.

Another significant contribution to the field is the progress in
both crystallisation technologies [56,57] and modeling approaches
[58]. Homology modeling nowadays already reaches a quality com-
parable to that resolved by X-ray diffraction as seen from the

publications on the steroid 5B-reductase AKR1D1 crystal structure
[59] and its high-resolution homology-build model [60] and allow
to explore active site geometries. As the number of protein folds
observed in different structures seems to be finite [61], in silico
approaches might soon be used for molecular docking of candidate
drugs to un-crystallised proteins.

5. Introducing metabolomics

Present data on the substrate preferences of various 173-HSD
typesillustrate their participations in multiple metabolic pathways.
Contemporary characterisation of 173-HSD roles faces the dimen-
sion of metabolomics, i.e. analyses of a multitude of metabolites at
the same time. This aspect becomes critical for drug development
as there is a need of a much wider validation of inhibitory effi-
cacy than just for steroid conversion. Steroid metabolising enzymes
like 173-HSD type 1 and 3 or 113-HSD type 1 are drug targets in
breast/prostate cancer [62-65] and metabolic syndrome [66-68],
respectively. Androgens and estrogens are as well incoming candi-
dates for obesity treatment [69,70] as the imbalance in hormone
levels correlates with obesity in human [71] and in mice models
[72,73]. There are several mechanisms like modulation of estrogen
receptor beta by a negative cross-talk with PPARgamma explaining
the associated signaling pathway [74]. At present, most valida-
tion studies for the candidate inhibitors of 17(3-HSDs were either
performed with purified proteins or ex vivo using transfected or
naturally expressing cell lines. There is a risk of off-side effects by
apparently specificinhibitors in vivo, e.g. modulation of further lipid
pathways.

Metabolomics has been found to be instrumental in analysing
responses to animal model treatment [75] and human therapies
[76] with rosiglitazone aimed for lipid level normalisation. Search
for biomarkers is a tedious and time consuming attempt but piv-
otal for identifying new characteristic processes of disease or for
theranostics. Such non-targeted attempts are contributing to our
knowledge on unanticipated biochemical processes and their inter-
connections in common human diseases like diabetes [77]. Another
approach is targeted metabolomics analysing a defined subset of
metabolites (e.g. selected lipids, amino acids and carbohydrates)
with the advantage of high-throughput and quantification [78]. Tar-
geted metabolomics has been recently applied to analyse the role
of genetic variants on metabolic profiles in a large human popu-
lation KORA [79]. It showed correlations between genotypes and
metabotypes (especially those in lipids) in predisposition to cer-
tain diseases, environmental, and nutritional challenge. As most
of the contemporary drugs are administered orally, significance of
the metabolomics of the gut was recognized recently [80,81]. It is
to be expected that metabolomics will further contribute to the
research on therapies of steroid-related indications in human disor-
ders. Major advantages to be named are: shorter drug development
time, lower associated costs and prevention of unexpected drop-
offs in clinical studies because of unanticipated side effects of the
drugs.
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